The following page describes the major use cases and key requirements targeted to the ONAP R11 Kyoto Release.
Use the R10 Use Case Template to create your Use Case wiki: R11 Use Case
Architecture Use Case Portal Page: https://safratech.net/onapdocs21/action_page.php?release=honolulu&doc_type=use-cases
Use Case Realization Call: Use Case Realization Meeting Register MoM
HISTORY OF USE CASE PORTAL PAGES
RELEASE | WIKI PAGE |
---|---|
R10 Jakarta Release Use Case Portal | R10 Jakarta Use Cases & Requirements Portal |
R9 Honolulu Release Use Case Portal | R9 Istanbul Use Cases & Requirements Portal |
R8 Honolulu Release Use Case Portal | Use Cases: R8 Honolulu Use Cases & Requirements |
R7 Guilin Release Use Case Portal | Guilin (R7) - Use Cases (and Requirements in Use Cases) |
R6 Use Case Portal Page | Release 6 (Frankfurt) proposed use cases and functional requirements |
2021 Use Case Realization Page | Use Case Realization Meeting Register MoM |
5G USE CASES & REQUIREMENTS IN R11 (Kyoto)
R11 USE CASE TEMPLATE: R11 Use Case
USE CASE / REQUIREMENT | DESCRIPTION | WIKI LINK |
---|---|---|
5G SON Use Case | SON (Self-Organizing Networks) functionality is an essential part of existing 4G mobility networks, and will be even more critical for 5G. SON enables automation to improve network performance and efficiency, improve user experience, and reduce operational expenses and complexity. The objective of the OOF-SON (new name for OOF-PCI) use case is to develop an ONAP-based SON platform using the ONAP Optimization Framework (OOF). We have taken a phased approach since SON is complex, and SON for 5G is still evolving. We started with the Physical Cell Identity (PCI) optimization SON use case in Casablanca, then added some centralized Automated Neighbor Relations (ANR) aspects in Dublin. In Frankfurt, we addressed some enhancements such as basic CM-notify handling (as preparation for O-RAN alignment), adaptive SON, etc. In Guilin, we introduced use of AI/ML by onboarding an offline-trained ML-model to ONAP which will provide additional inputs to PCI optimization based on historical PM data, and stabilized the functionality in Honolulu. In Istanbul, we will align FM messages with relevant standards, move to new 3GPP NRM-based yang models and leverage CPS for RAN configuration. | |
End to End Network Slicing | 5G Network Slicing is one of the key features of 5G. The essence of Network Slicing is in sharing network resources (PNFs, VNFs, CNFs) while satisfying widely varying and sometimes seemingly contradictory requirements to different customers in an optimal manner. Same network is expected to provide different Quality of Experience to different consumers, use case categories and industry verticals including factory automation, connected home, autonomous vehicles, smart cities, remote healthcare, in-stadium experience and rural broadband. An End-to-End Network Slice consists of RAN, Transport and Core network slice sub-nets. This Use Case intends to demonstrate the modeling, orchestration and assurance of a simple network slice (e.g. eMBB). While 3GPP standards are evolving and 5G RAN and core are being realized, this Use Case will start with realizing an E2E Network Slice with a simple example of a 5G RAN, Core and Transport Network Slice sub-nets. It will also align with relevant standard bodies (e.g., 3GPP, ETSI, TM Forum) as well as other open initiatives such as O-RAN where relevant, w.r.to both interfaces as well as the functional aspects. | |
Smart Operator Intent Translation in UUI based on IBN - R8 5G Slicing Support | A lightweight and high-cohesion Nature Language Processing (NLP) function is proposed to add in the UUI project, in order to translate the network operation engineers’ text/voice intents to the suitable slicing parameters quickly and decrease the manual configurations. | |
Support for Vertical Industry | Support for Vertical Industry. Intent framework is a system that helps to implement and operate networks that can improve network availability and agility. It takes a high-level business goal (intent) as input, converts it to the necessary network configurations and applies the network changes via network automation and/or network orchestration. Continuously monitoring the status of the network under control, the system validates in real time that the intent is being met, and can take corrective actions when desired intent is not met. | |
Intent Based Networking | Support for Intent Framework and Intent Modeling. (add description) | |
Intent Based Networking with CCVPN | IBN with CCVPN | |
OPS-5G | Open Programmable Secure 5G (R10)? https://safratech.net/5g-bp/ 5G Testbed for Government projects. DARPA Lab (DoD) → Navy R&D using Open Source Components. The initial deployment using a commercial RAN product then evolve into an ORAN. E/+Nok. Magma is an open source Core (from Facebook) - orchestration of Magma via ONAP. Magma (1) orchestrator/controller (2) Core (Access Gateway) EPC runs on Edge Nodes Edge Apps - Multiple Orchestrators. ONAP will orchestrate the Magma orchestrator + gateways. | |
ETSI Alignment | ETSI Alignment Use Case to support CNF orchestration. Driven from the ETSI SOL 00x series of standards. |
MAJOR USE CASES PAGE
The following are Links to Overviews, Demos and Summary Slides for each of the major use cases:
See the Major Use Cases page for the Overview table:
USEFUL LINKS
The following table has useful links: