Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


The following page describes the major use cases and key requirements targeted to the ONAP R9 Istanbul Release.

...

USE CASE / REQUIREMENTDESCRIPTIONWIKI LINK
5G SON Use CaseSON (Self-Organizing Networks) functionality is an essential part of existing 4G mobility networks, and will be even more critical for 5G. SON enables automation to improve network performance and efficiency, improve user experience, and reduce operational expenses and complexity. The objective of the OOF-SON (new name for OOF-PCI) use case is to develop an ONAP-based SON platform using the ONAP Optimization Framework (OOF). We have taken a phased approach since SON is complex, and SON for 5G is still evolving. We started with the Physical Cell Identity (PCI) optimization SON use case in Casablanca, then added some centralized Automated Neighbor Relations (ANR) aspects in Dublin. In Frankfurt, we addressed some enhancements such as basic CM-notify handling (as preparation for O-RAN alignment), adaptive SON, etc. In Guilin, we introduced use of AI/ML by onboarding an offline-trained ML-model to ONAP which will provide additional inputs to PCI optimization based on historical PM data, and stabilized the functionality in Honolulu. In Istanbul, we will align FM messages with relevant standards, move to new 3GPP NRM-based yang models and leverage CPS for RAN configuration.R9 5G SON use case
End to End Network Slicing5G Network Slicing is one of the key features of 5G. The essence of Network Slicing is in sharing network resources (PNFs, VNFs, CNFs) while satisfying widely varying and sometimes seemingly contradictory requirements to different customers in an optimal manner. Same network is expected to provide different Quality of Experience to different consumers, use case categories and industry verticals including factory automation, connected home, autonomous vehicles, smart cities, remote healthcare, in-stadium experience and rural broadband. An End-to-End Network Slice consists of RAN, Transport and Core network slice sub-nets. This Use Case intends to demonstrate the modeling, orchestration and assurance of a simple network slice (e.g. eMBB). While 3GPP standards are evolving and 5G RAN and core are being realized, this Use Case will start with realizing an E2E Network Slice with a simple example of a 5G RAN, Core and Transport Network Slice sub-nets. It will also align with relevant standard bodies (e.g., 3GPP, ETSI, TM Forum) as well as other open initiatives such as O-RAN where relevant, w.r.to both interfaces as well as the functional aspects.R9 E2E Network Slicing use case

Smart Operator Intent Translation in UUI based on IBN - R8 5G Slicing Support

A lightweight and high-cohesion Nature Language Processing (NLP) function is proposed to add in the UUI project, in order to translate the network operation engineers’ text/voice intents to the suitable slicing parameters quickly and decrease the manual configurations.
Support for Vertical Industry

Support for Vertical Industry. Intent framework is a system that helps to implement and operate networks that can improve network availability and agility. It takes a high-level business goal (intent) as input, converts it to the necessary network configurations and applies the network changes via network automation and/or network orchestration. Continuously monitoring the status of the network under control, the system validates in real time that the intent is being met, and can take corrective actions when desired intent is not met.


Intent Based Networking

Support for Intent Framework and Intent Modeling. (add description)


A1 Policy Function Extensions (ONAP/3GPP & O-RAN Alignment: A1 Adapter and Policy Management Extension

A1 Adapter and Policy Management Extension.

R8: This requirement enhances the A1 interface capabilities provided in Rel 6 as part of  5G/ORAN & 3GPP Standards Harmonization requirement ( REQ-38) and extended in Rel 7 with the introduction of A1 policy management.   O-RAN has defined A1 interface specification in the context of the management of 5G RAN elements to provide intent based policies for optimization of the RAN network performance. Planned enhancements for Rel 8 include support of new A1 interface version in alignment to O-RAN alliance and common logging/audit.

R9: This feature requirement enhances A1 Policy Management for the O-RAN A1 interface capabilities provided in Rel 6, 7 & 8. Work will continue by extending & evolving support for using A1 Policies to manage 5G RAN elements by providing intent based policies for optimization of the RAN network performance. Planned enhancements for Rel 9 include support of new A1 interface versions to align with new versions & improvements to O-RAN alliance specifications.

R9 A1 Policy Function Extensions




MAJOR USE CASES & REQUIREMENTS IN R9 (ISTANBUL)

...