Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 23 Next »

Existing Optimization Models

Minimize an unweighted value

{  
         "minimize":{  
            "attribute":  
               {  
                  "distance_between":[  
                     "customer_loc",
                     "vG"
                  ]
               }
         }
 }

Minimize a weighted value

{
    "minimize": {
        "attribute": {
            "product": [
                200,
                {
                    "distance_between": [
                        "customer_loc",
                        "vG"
                    ]
                }
            ]
        }
    }
}

Maximize an unweighted value

{
    "maximize": {
        "attribute": {
            "reliability": [
                "URLLC"
            ]
        }
    }
}

Maximize a weighted value

{
    "maximize": {
        "attribute": {
            "product": [
                200,
                {
                    "reliability": [
                        "URLLC"
                    ]
                }
            ]
        }
    }
}

Minimize the sum of unweighted values

{
    "minimize": {
        "sum": [
            {
                "distance_between": [
                    "customer_loc",
                    "vG"
                ]
            },
            {
                "distance_between": [
                    "customer_loc",
                    "vG"
                ]
            }
        ]
    }
}

Minimize the sum of weighted values

{
    "minimize": {
        "sum": [
            {
                "product": [
                    100,
                    {
                        "distance_between": [
                            "customer_loc",
                            "vG"
                        ]
                    }
                ]
            },
            {
                "product": [
                    200,
                    {
                        "hpa_score": [
                            "vG"
                        ]
                    }
                ]
            }
        ]
    }
}

New Optimization Model

Normalization???

unique solutions ???

Objective Function Object

AttributeRequiredContentValuesDescription
goalYStringminimize, maximizeThe goal of the optimization
Operation FunctionYOperation function Object
The operation function that has to be optimized

Operation function object

AttributeRequiredContentValuesDescription
operationYString

sum, min, max

The operation which will be a part of the objective function
operandsY

List of operand object


The operand on which the operation is to be performed.

The operand can be an attribute or result of a function 

inverseNBooleandefault : FalseFlag to specify whether the objective function has to be inverted.

operand object

AttributeRequiredContentValuesDescription
weightNdecimaldefault: 1.0Weight of the operand
operation_functionNoperation function object

functionNString

distance_between,

latency_between, attribute

Function to be performed on the parameters
fucntion_paramsNdict

parameters on which the function will be applied.

The parameters will change for each function.

Examples

1. Minimize an attribute of the demand

{
    "goal": "minimize",
    "objective_function": {
        "operand": [
            {
                "function": "attribute",
                "params": {
                    "attribute": "latency",
                    "demand": "urllc_core"
                }
            }
        ],
        "operation": "sum"
    }
}

2. Minimize the sum of the distance between the demand and the customer location.

objective function - distance_between(demand, location) + distance_between(demand, location)

{
   "goal": "minimize",
   "objective_function": {
      "operation": "sum",
      "operands": [
         {
            "function": "distance_between",
            "weight": 1.0,
            "params": {
               "demand": "vG",
               "location": "customer_loc"      
            } 
         },
         {
 	        "function": "distance_between",
            "weight": 1.0,
            "params": {
               "demand": "vFW",
               "location": "customer_loc"      
            } 
         }
      ]
   }
}

Scenario: 

Minimize the sum of latencies of slice subnets

objective function - latency(demand) + latency(demand)

{
   "goal": "minimize",
   "objective_function": {
   "operation": "sum",
   "operands": [
      {
         "function": "attribute",
         "weight": 1.0,
         "params": {
            "demand": "urllc_core",
            "attribute": "latency"      
         } 
      },
      {
         "function": "attribute",
         "weight": 1.0,
         "params": {
            "demand": "urllc_ran",
            "attribute": "latency"      
         } 
      }
   ]
 }
}

Scenario: 

Max  [ sum ( W_bw *  min (ran_nssi_bw, core_nssi_bw, tr_nssi_bw), 1/(W_lat * ( sum (w1 * ran_nssi_lat, w2 core_lat, W3* tn_lat)) ) ]

{
   "goal": "maximize",
   "objective_function": {
   "operation": "sum",
   "operands": [
      {
         "objective_function": {
             "operation": "min",
             "operand": [
                 {
                      "weight": 1.0,
                      "function": "attribute",
                      "params": {
                         "demand": "urllc_core",
                         "attribute": "throughput"
                      }
                 },
                 {
                      "weight": 1.0,
                      "function": "attribute",
                      "params": {
                         "demand": "urllc_ran",
                         "attribute": "throughput"
                      }
                 },
                 {
                      "weight": 1.0,
                      "function": "attribute",
                      "params": {
                         "demand": "urllc_transport",
                         "attribute": "throughput"
                      }
                 }
             ]
         },
         "weight": 2.0 
      },
      {
         "objective_function": {
             "inverse": true,
             "operation": "sum",
             "operand": [
                 {
                     "weight": 1.0,
                     "function": "attribute",
                     "params": {
                         "demand": "urllc_core",
                         "attribute": "latency"
                      }
                 },
                 {
                     "weight": 1.0,
                     "function": "attribute",
                     "params": {
                         "demand": "urllc_ran",
                         "attribute": "latency"
                      }
                 },
                 {
                     "weight": 1.0,
                     "function": "attribute",
                     "params": {
                         "demand": "urllc_transport",
                         "attribute": "latency"
                      }
                 }
             ]
         },
         "weight": 1.0
      }
   ]
 }
}

_bw = [100, 200, 300]

ran_nssi → property bw → func(slice_profile[])

core_nssi  → property bw → func(slice_profile[])

tn_nssi  → property bw→ func(slice_profile[])

Maximize (min (ran_nssi_bw, core_nssi_bw, tr_nssi_bw))

Max  [ sum ( W_bw *  min (ran_nssi_bw, core_nssi_bw, tr_nssi_bw), 1/(W_lat * ( sum (w1 * ran_nssi_lat, w2 core_lat, W3* tn_lat)) ) ]

Min/max operator:  list of operands

Sum operator : list of operands

prod operator: weight, operand

normalized_unit = func(bw, weight, unit)

normalized_unit = func(lat, weight, unit)

Impact Analysis


API  - no impact

Controller

Template version upgrade

New parser for the optimization model

Data - no impact

Solver

A new solver for the model (recursive solver?)

Reservation - no impact

  • No labels