Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 139 Next »

This guide is geared to provide information regarding  how to build a CBA.


 1

1

 2

2

 Installation

Installation

ONAP is meant to be deployed within a Kubernetes environment. Hence, the de-facto way to deploy CDS is through Kubernetes.

ONAP also package Kubernetes manifest as Chart, using Helm.

Prerequisite

https://docs.onap.org/en/latest/guides/onap-developer/settingup/index.html

Setup local Helm

helm repo
helm init --history-max 200 # To install tiller to target Kubernetes if not yet installed
helm serve &
helm repo add local http://127.0.0.1:8879

Get the chart

Make sure to checkout the release to use, by replacing $release-tag in bellow command

git clone
git clone https://gerrit.onap.org/r/oom
git checkout tags/$release-tag
cd oom/kubernetes
make common
make cds

Install CDS

helm install
helm install --name cds cds

Result

kubectl output
$ kubectl get all --selector=release=cds
NAME                                             READY     STATUS    RESTARTS   AGE
pod/cds-blueprints-processor-54f758d69f-p98c2    0/1       Running   1          2m
pod/cds-cds-6bd674dc77-4gtdf                     1/1       Running   0          2m
pod/cds-cds-db-0                                 1/1       Running   0          2m
pod/cds-controller-blueprints-545bbf98cf-zwjfc   1/1       Running   0          2m
NAME                            TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)             AGE
service/blueprints-processor    ClusterIP   10.43.139.9     <none>        8080/TCP,9111/TCP   2m
service/cds                     NodePort    10.43.254.69    <none>        3000:30397/TCP      2m
service/cds-db                  ClusterIP   None            <none>        3306/TCP            2m
service/controller-blueprints   ClusterIP   10.43.207.152   <none>        8080/TCP            2m
NAME                                        DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/cds-blueprints-processor    1         1         1            0           2m
deployment.apps/cds-cds                     1         1         1            1           2m
deployment.apps/cds-controller-blueprints   1         1         1            1           2m
NAME                                                   DESIRED   CURRENT   READY     AGE
replicaset.apps/cds-blueprints-processor-54f758d69f    1         1         0         2m
replicaset.apps/cds-cds-6bd674dc77                     1         1         1         2m
replicaset.apps/cds-controller-blueprints-545bbf98cf   1         1         1         2m
NAME                          DESIRED   CURRENT   AGE
statefulset.apps/cds-cds-db   1         1         2m
 Swagger
 CDS Design Time

CDS Design time

Bellow are the requirements to enable automation for a service within ONAP.

For instantiation, the goal is to be able to automatically resolve all the HEAT/Helm variables, called cloud parameters.

For post-instantiation, the goal is to configure the VNF with initial configuration.


As part of SDC design time, when defining the topology, for the resource of type VF or PNF, you need to specify



 Prerequisite

Prerequisite

  1. Gather the parameters:

     instantiation

    Have the HEAT template along with the HEAT environment file.

    or

    Have the Helm chart along with the Values.yaml file (Integration between Multcloud and CDS TBD)

     configuration

    Have the configuration template to apply on the VNF.

    1. XML for NETCONF
    2. JSON / XML for RESTCONF
    3. JSON for Ansible
    4. CLI
    5. ...
  2. Identify which template parameters are static and dynamic
  3. Create and fill-in the a table for all the dynamic values

    While doing so, identify the resources using the same process to be resolved; for instance, if two IPs has to be resolved through the same IPAM, the process the resolve the IP is the same.


 Data Dictionary

Data dictionary

What is a data dictionary?

For each unique identified dynamic resource, along with all their ingredients, we need to create a data dictionary.

Here are the modeling guideline: Modeling Concepts#resourceDefinition-modeling


Bellow are examples of data dictionary

 input

Value will be pass as input.

unit-number
{
    "tags": "unit-number",
    "name": "unit-number",
    "property": {
      "description": "unit-number",
      "type": "string"
    },
    "updated-by": "adetalhouet",
    "sources": {
      "input": {
        "type": "source-input"
      }
    }
  }
 default

Value will be defaulted.

prefix-id
{
  "tags": "prefix-id",
  "name": "prefix-id",
  "property" :{
    "description": "prefix-id",
    "type": "integer"
  },
  "updated-by": "adetalhouet",
  "sources": {
    "default": {
      "type": "source-default"
    }
  }
}
 rest

Value will be resolved through REST.

Modeling reference: Modeling Concepts#rest


primary-config-data via rest source type

In this example, we're making a POST request to an IPAM system with no payload.

Some ingredients are required to perform the query, in this case, $prefixId. Hence It is provided as an input-key-mapping and defined as a key-dependencies. Please refer to the modeling guideline for more in depth understanding.

As part of this request, the expected response will be as bellow. What is of interest is the address field, as this is what we're trying to resolve.

response
{
    "id": 4,
    "address": "192.168.10.2/32",
    "vrf": null,
    "tenant": null,
    "status": 1,
    "role": null,
    "interface": null,
    "description": "",
    "nat_inside": null,
    "created": "2018-08-30",
    "last_updated": "2018-08-30T14:59:05.277820Z"
}

To tell the resolution framework what is of interest in the response, the path property can be used, which uses JSON_PATH, to get the value.

create_netbox_ip_address
{
    "tags" : "oam-local-ipv4-address",
    "name" : "create_netbox_ip",
    "property" : {
      "description" : "netbox ip",
      "type" : "string"
    },
    "updated-by" : "adetalhouet",
    "sources" : {
      "primary-config-data" : {
        "type" : "source-rest",
        "properties" : {
          "type" : "JSON",
          "verb" : "POST",
          "endpoint-selector" : "ipam-1",
          "url-path" : "/api/ipam/prefixes/$prefixId/available-ips/",
          "path" : "/address",
          "input-key-mapping" : {
            "prefixId" : "prefix-id"
          },
          "output-key-mapping" : {
            "address" : "address"
          },
          "key-dependencies" : [ "prefix-id" ]
        }
      }
    }
  }
 db

Value will be resolved through a database.

Modeling reference: Modeling Concepts#sql

In this example, we're making a SQL to the primary database.

Some ingredients are required to perform the query, in this case, $vfmoudleid. Hence It is provided as an input-key-mapping and defined as a key-dependencies. Please refer to the modeling guideline for more in depth understanding.

As part of this request, the expected response will be as put in value. In the output-key-mapping section, that value will be mapped to the expected resource name to resolve.

vf-module-type
{
  "name": "vf-module-type",
  "tags": "vf-module-type",
  "property": {
    "description": "vf-module-type",
    "type": "string"
  },
  "updated-by": "adetalhouet",
  "sources": {
    "primary-db": {
      "type": "source-db",
      "properties": {
        "type": "SQL",
        "query": "select sdnctl.demo.value as value from sdnctl.demo where sdnctl.demo.id=:vfmoduleid",
        "input-key-mapping": {
          "vfmoduleid": "vf-module-number"
        },
        "output-key-mapping": {
          "vf-module-type": "value"
        },
        "key-dependencies": [
          "vf-module-number"
        ]
      }
    }
  }
}
 capability

Value will be resolved through the execution of a script.

Modeling reference: Modeling Concepts#Capability

In this example, we're making use of a Python script.

Some ingredients are required to perform the query, in this case, $vf-module-type. Hence It is provided as a key-dependencies. Please refer to the modeling guideline for more in depth understanding.

As part of this request, the expected response will set within the script itself.

interface-description
{
  "tags": "interface-description",
  "name": "interface-description",
  "property": {
    "description": "interface-description",
    "type": "string"
  },
  "updated-by": "adetalhouet",
  "sources": {
    "capability": {
      "type": "source-capability",
      "properties": {
        "script-type": "jython",
        "script-class-reference": "Scripts/python/DescriptionExample.py",       
        "key-dependencies": [
          "vf-module-type"
        ]
      }
    }
  }
}

The script itself is as bellow.

The key is to have the script class derived from the framework standards.

In the case of resource resolution, the class to derive from is AbstractRAProcessor

It will give the required methods to implement: process and recover, along with some utility functions, such as set_resource_data_value or addError.

These functions either come from the AbstractRAProcessor class, or from the class it derived from.

If the resolution fail, the recover method will get called with the exception as parameter.

Scripts/python/DescriptionExample.py
#  Copyright (c) 2019 Bell Canada.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from abstract_ra_processor import AbstractRAProcessor
from blueprint_constants import *
from java.lang import Exception as JavaException

class DescriptionExample(AbstractRAProcessor):

    def process(self, resource_assignment):
        try:
            # get key-dependencies value
            value = self.raRuntimeService.getStringFromResolutionStore("vf-module-type")
            
            # logic based on key-dependency outcome
            result = ""
            if value == "vfw":
                result = "This is the Virtual Firewall entity"
            elif value == "vsn":
                result = "This is the Virtual Sink entity"
            elif value == "vpg":
                result = "This is the Virtual Packet Generator"

            # set the value of resource getting currently resolved
            self.set_resource_data_value(resource_assignment, result)

        except JavaException, err:
          log.error("Java Exception in the script {}", err)
        except Exception, err:
          log.error("Python Exception in the script {}", err)
        return None

    def recover(self, runtime_exception, resource_assignment):
        print self.addError(runtime_exception.getMessage())
        return None


 complex type

Value will be resolved through REST., and output will be a complex type.

Modeling reference: Modeling Concepts#rest

In this example, we're making a POST request to an IPAM system with no payload.

Some ingredients are required to perform the query, in this case, $prefixId. Hence It is provided as an input-key-mapping and defined as a key-dependencies. Please refer to the modeling guideline for more in depth understanding.

As part of this request, the expected response will be as bellow.

response
{
    "id": 4,
    "address": "192.168.10.2/32",
    "vrf": null,
    "tenant": null,
    "status": 1,
    "role": null,
    "interface": null,
    "description": "",
    "nat_inside": null,
    "created": "2018-08-30",
    "last_updated": "2018-08-30T14:59:05.277820Z"
}

What is of interest is the address and id fields. For the process to return these two values, we need to create a custom data-type, as bellow

dt-netbox-ip
{
  "version": "1.0.0",
  "description": "This is Netbox IP Data Type",
  "properties": {
    "address": {
      "required": true,
      "type": "string"
    },
    "id": {
      "required": true,
      "type": "integer"
    }
  },
  "derived_from": "tosca.datatypes.Root"
}

The type of the data dictionary will be dt-netbox-ip.

To tell the resolution framework what is of interest in the response, the output-key-mapping section is used. The process will map the output-key-mapping to the defined data-type.

create_netbox_ip_address
{
    "tags" : "oam-local-ipv4-address",
    "name" : "create_netbox_ip",
    "property" : {
      "description" : "netbox ip",
      "type" : "dt-netbox-ip"
    },
    "updated-by" : "adetalhouet",
    "sources" : {
      "primary-config-data" : {
        "type" : "source-rest",
        "properties" : {
          "type" : "JSON",
          "verb" : "POST",
          "endpoint-selector" : "ipam-1",
          "url-path" : "/api/ipam/prefixes/$prefixId/available-ips/",
          "path" : "",
          "input-key-mapping" : {
            "prefixId" : "prefix-id"
          },
          "output-key-mapping" : {
			"address" : "address",
            "id" : "id"
          },
          "key-dependencies" : [ "prefix-id" ]
        }
      }
    }
  }
 CBA Scaffholding

CBA scaffholding

The overall purpose of the document is the constituate a CBA, see Modeling Concepts#ControllerBlueprintArchive for understanding of what a CBA is.

Now is the time to create the scaffholfing for your CBA.

What you will need is the following based directory/file structure:

├── Definitions
│   └── blueprint.json                          Overall TOSCA service template (worfklow + node_template)
├── Environments                                Contains *.properties files as required by the service
├── Plans                                       Contains Directed Graph
├── Scripts                                     Contains scripts
│   ├── python                                  Python scripts
│   └── kotlin                                  Kotlin scripts
├── TOSCA-Metadata
│   └── TOSCA.meta                              Meta-data of overall package
└── Templates                                   Contains combination of mapping and template

The TOSCA.meta should have this information

TOSCA-Meta-File-Version: 1.0.0
CSAR-Version: 1.0
Created-By: Alexis de Talhouët (adetalhouet89@gmail.com)
Entry-Definitions: Definitions/blueprint.json					<- Path reference to the blueprint.json file. If the file name is changed, change here accordinlgy.
Template-Tags: ONAP, CBA, Test
Content-Type: application/vnd.oasis.bpmn

The blueprint.json should have the following metadata

{
  "metadata": {
    "template_author": "Alexis de Talhouët",
    "author-email": "adetalhouet89@gmail.com",
    "user-groups": "ADMIN, OPERATION",
    "template_name": "golden",									<- This is the overall CBA name, will be refer later to sdnc_blueprint_name
    "template_version": "1.0.0",								<- This is the overall CBA version, will be refer later to sdnc_blueprint_version
    "template_tags": "ONAP, CBA, Test"
  }
. . .
 ONAP Specific Workflows

ONAP Specific Workflows

The following workflows are contracts established between SO, SDNC and CDS to cover the instantiation and the post-instantiation use cases.

User -> SO (Macro Service Create)
  SO -> AssignBB (service, vnf, vf-module) - instantiation
          -> SDNC GR-API
                  -> CDS (resource-assignment workflow)
  SO -> ConfigAssignBB - day0 config assign
          -> CDS (config-assign workflow)
  SO -> CreateBB (VF-Module)
          -> OpenStack adapter / Multi-Cloud
  SO -> ConfigDeployBB - day0 config push
          -> CDS (config-deploy workflow)

Please refer to the modeling guide to understand workflow concept: Modeling Concepts#workflow

The workflow definition will be added within the blueprint.json file, see CBA scaffholding.


 resource-assignment

resource-assignment

This action is meant to assign resources needed to instantiate the service, e.g. to resolve all the cloud parameters.

Also, this action has the ability to perform a dry-run, meaning that result from the resolution will be made visible to the user.


Context

This action is triggered by Generic-Resource-API (GR-API) within SDNC as part of the AssignBB orchestrated by SO.

It will be triggered for each VNF(s) and VF-Module(s) (referred as entity bellow).

See SO Building blocks Assignment.

Templates

Understand resource accumulator templates

These templates are specific to the instantiation scenario, and relies on GR-API within SDNC.

The resource accumulator template is composed of the following sections:

resource-accumulator-resolved-data

Defines all the resources that can be resolved directly from the context. It expresses a direct mapping between the name of the resource and its value.

RA resolved data
  "resource-accumulator-resolved-data": [
    {
      "param-name": "service-instance-id",
      "param-value": "${service-instance-id}"
    },
    {
      "param-name": "vnf_id",
      "param-value": "${vnf-id}"
    }
  ]
capability-data

Defines the logic to use to create a specific resource, along with the ingredients required to invoke the capability and the output mapping. See the ingredients as function parameters, and output mapping as returned value.

The logic to resolve the resource is a DG, hence DG development is required to support a new capability.

Currently the following capabilities exist:

  • Netbox: netbox-ip-assign

    Example
        {
          "capability-name": "netbox-ip-assign",
          "key-mapping": [
            {
              "payload": [
                {
                  "param-name": "service-instance-id",
                  "param-value": "${service-instance-id}"
                },
                {
                  "param-name": "prefix-id",
                  "param-value": "${private-prefix-id}"
                },
                {
                  "param-name": "vf-module-id",
                  "param-value": "${vf-module-id}"
                },
                {
                  "param-name": "external_key",
                  "param-value": "${vf-module-id}-vpg_private_ip_1"
                }
              ],
              "output-key-mapping": [
                {
                  "resource-name": "vpg_private_ip_1",
                  "resource-value": "${vpg_private_ip_1}"
                }
              ]
            }
          ]
        }
  • Name generation: generate-name

    Example
        {
          "capability-name": "generate-name",
          "key-mapping": [
            {
              "payload": [
                {
                  "param-name": "resource-name",
                  "param-value": "vnf_name"
                },
                {
                  "param-name": "resource-value",
                  "param-value": "${vnf_name}"
                },
                {
                  "param-name": "external-key",
                  "param-value": "${vnf-id}_vnf_name"
                },
                {
                  "param-name": "policy-instance-name",
                  "param-value": "${vf-naming-policy}"
                },
                {
                  "param-name": "nf-role",
                  "param-value": "${nf-role}"
                },
                {
                  "param-name": "naming-type",
                  "param-value": "VNF"
                },
                {
                  "param-name": "AIC_CLOUD_REGION",
                  "param-value": "${aic-cloud-region}"
                }
              ],
              "output-key-mapping": [
                {
                  "resource-name": "vnf_name",
                  "resource-value": "${vnf_name}"
                }
              ]
            }
          ]
        }

Required templates

See Modeling Concepts#template

The name of the templates is very important, and can't be random. Bellow are the requirements

VNF

The VNF Resource Accumulator Template prefix name can be anything, but what is very important is that when integrating with SDC the sdnc_artifact_name property of the VF or PNF needs to be the same; see here.

VF-Modules

Each vf-module will have its own resource accumulator template, and its prefix name must be the vf-module-label, which is nothing but the name of the HEAT file defining the OS::Nova::Server

Example:

If the file is name vfw.yaml, the vf-module-label will be vfw

For instance, with the vFW service HEAT definition, you will see in the VSP within SDC the following screen, showing you the label of each vf-module

In this case, we will have 4 resource accumulator templates, following the template convention, hence ending with -template

  • base_template-template.vtl
  • vfw-template.vtl
  • vsn-template.vtl
  • vpg-template.vtl


 VSP attachement

Mapping

Each template requires its associated mapping file, see Modeling Concepts#ArtifactMappingResource

Example:

Taking the same vFW example, we would have 4 mapping template following the convention, hence ending with -mapping:

  • base_template-mapping.vtl
  • vfw-mapping.vtl
  • vsn-mapping.vtl
  • vpg-mapping.vtl

Required Inputs

PropertyDescriptionDefinition
template-prefix

SDNC will populate this input with the name of the template to execute.

If doing VNF Assign, it will use sdnc_artifact_name as template-prefix.

If doing VF-Module Assign, it will use the vf-module-label as template-prefix.

"template-prefix" : {
   "required" : true,
   "type" : "list",
   "entry_schema" : {
      "type" : "string"
   }

Output

It is necessary to provide the resolved template as output. To do so, we will use the Modeling Concepts#getAttribute expression.

Also, as mentioned here Modeling Concepts#resourceResolution, the resource resolution component node will populate an attribute named assignment-params with the result.

Finally, the name of the ouput has to be meshed-template so SDNC GR-API knows how to properly parse the response.

Component

This action requires a node_template of type component-resource-resolution

The name of the node_template is important, as it will be used within the Workflow definition (see step.target property Modeling Concepts#workflowProperties)

Finally, you can see the component has a list of artifacts, being the template/mapping defined before.

Example:

Taking the same vFW example, we have a node_template name resource-assignment:

Example
    "node_templates": {
      "resource-assignment" : {
        "type" : "component-resource-resolution",
        "interfaces" : {
          "ResourceResolutionComponent" : {
            "operations" : {
              "process" : {
                "inputs" : {
                  "artifact-prefix-names" : {
                    "get_input" : "template-prefix"
                  }
                }
              }
            }
          }
        },
        "artifacts": {
          "base-template": {
            "type": "artifact-template-velocity",
            "file": "Templates/base-template.vtl"
          },
          "base-mapping": {
            "type": "artifact-mapping-resource",
            "file": "Templates/base-mapping.json"
          },
          "vfw-template": {
            "type": "artifact-template-velocity",
            "file": "Templates/vfw-template.vtl"
          },
          "vfw-mapping": {
            "type": "artifact-mapping-resource",
            "file": "Templates/vfw-mapping.json"
          },
          "vfw-vnf-template": {
            "type": "artifact-template-velocity",
            "file": "Templates/vfw-vnf-template.vtl"
          },
          "vfw-vnf-mapping": {
            "type": "artifact-mapping-resource",
            "file": "Templates/vfw-vnf-mapping.json"
          },
          "vpg-template": {
            "type": "artifact-template-velocity",
            "file": "Templates/vpg-template.vtl"
          },
          "vpg-mapping": {
            "type": "artifact-mapping-resource",
            "file": "Templates/vpg-mapping.json"
          },
          "vsn-template": {
            "type": "artifact-template-velocity",
            "file": "Templates/vsn-template.vtl"
          },
          "vsn-mapping": {
            "type": "artifact-mapping-resource",
            "file": "Templates/vsn-mapping.json"
          }
        }
      }
    }
  }

Overall workflow example w/ component and artifact

resource-assignment
{
  "metadata": {
    "template_author": "Alexis de Talhouët",
    "author-email": "adetalhouet89@gmail.com",
    "user-groups": "ADMIN, OPERATION",
    "template_name": "vFW_spinup",
    "template_version": "1.0.0",
    "template_tags": "vFW"
  },
  "topology_template": {
    "workflows": {
      "resource-assignment": {
        "steps": {
          "resource-assignment": {
            "description": "Resource Assign Workflow",
            "target": "resource-assignment"
          }
        },
        "inputs" : {
          "template-prefix" : {
            "required" : true,
            "type" : "list",
            "entry_schema" : {
              "type" : "string"
            }
          }
        },
        "outputs": {
          "meshed-template": {
            "type": "json",
            "value": {
              "get_attribute": [
                "resource-assignment",
                "assignment-params"
              ]
            }
          }
        }
      }
    },
    "node_templates": {
      "resource-assignment" : {
        "type" : "component-resource-resolution",
        "interfaces" : {
          "ResourceResolutionComponent" : {
            "operations" : {
              "process" : {
                "inputs" : {
                  "artifact-prefix-names" : {
                    "get_input" : "template-prefix"
                  }
                }
              }
            }
          }
        },
        "artifacts": {
          "base-template": {
            "type": "artifact-template-velocity",
            "file": "Templates/base-template.vtl"
          },
          "base-mapping": {
            "type": "artifact-mapping-resource",
            "file": "Templates/base-mapping.json"
          },
          "vfw-template": {
            "type": "artifact-template-velocity",
            "file": "Templates/vfw-template.vtl"
          },
          "vfw-mapping": {
            "type": "artifact-mapping-resource",
            "file": "Templates/vfw-mapping.json"
          },
          "vfw-vnf-template": {
            "type": "artifact-template-velocity",
            "file": "Templates/vfw-vnf-template.vtl"
          },
          "vfw-vnf-mapping": {
            "type": "artifact-mapping-resource",
            "file": "Templates/vfw-vnf-mapping.json"
          },
          "vpg-template": {
            "type": "artifact-template-velocity",
            "file": "Templates/vpg-template.vtl"
          },
          "vpg-mapping": {
            "type": "artifact-mapping-resource",
            "file": "Templates/vpg-mapping.json"
          },
          "vsn-template": {
            "type": "artifact-template-velocity",
            "file": "Templates/vsn-template.vtl"
          },
          "vsn-mapping": {
            "type": "artifact-mapping-resource",
            "file": "Templates/vsn-mapping.json"
          }
        }
      }
    }
  }
}

Add a new capability

When adding a capability, consider whether it should be available both at VNF and VF-Module level. This is important for its implementation.

Here is the

You need to do the following:

  1. Create the DG that will handle the logic to resolve the resource
  2. Load the DG within SDNC

    Example of script to automate deployment of DG
    #!/bin/sh
    
    # This script takes care of loading the DG into the runtime of SDNC.
    # The DG file name has to follow this pattern:
    # GENERIC-RESOURCE-API_{rpc_name}_{version}
    
    usage() {
      echo "./load-dg.sh <dg>"
      exit
    }
    
    if [[ -z $1 ]]
    then
        usage
    fi
    
    rpc_name=`echo "$1" | cut -d'_' -f2 | cut -d'.' -f1`
    version=`echo "$1" | cut -d'_' -f3`
    content=`cat $1`
    ip=$2
    
    data="$(curl -s -o /dev/null -w %{url_effective} --get --data-urlencode "$content" "")"
    dg_xml_escaped="${data##/?}"
    
    echo -e "module=GENERIC-RESOURCE-API&rpc=$rpc_name&flowXml=$dg_xml_escaped" > payload
    
    echo -e "    Installing $rpc_name version ${version%.*}"
    curl -X  POST \
      http://$ip:$SDNC_NODE_PORT/uploadxml \
      -H 'Authorization: Basic ZGd1c2VyOnRlc3QxMjM=' \
      -H 'Content-Type: application/x-www-form-urlencoded' \
      -d @payload
    
    rm payload
    
    echo -e "    Activating $rpc_name version ${version%.*}"
    activate_uri="activateDG?module=GENERIC-RESOURCE-API&rpc=$rpc_name&mode=sync&version=${version%.*}&displayOnlyCurrent=true"
    curl -X GET \
      -H 'Accept: application/json' \
      -H 'Authorization: Basic ZGd1c2VyOnRlc3QxMjM=' \
      -H 'Content-Type: application/json' \
      http://$ip:$SDNC_NODE_PORT/$activate_uri
    
    
  3. Add the capability in the self-serve-vnf-assign DG and/or self-serve-vf-module-assign in the node named set ss.capability.execution-order[] then upload the updated version of this DG.
    When doing so, make sure to increment the last parameter ss.capability.execution-order_length

     Example

Understand overall SDNC DG flow logic

Logic for vnf and vf-module assignement is pretty much the same.

This is the general DG logic of the VNF assign flow and sub-flows:

  1. call vnf-topology-operation
    1. call vnf-topology-operation-assign
      1. call self-serve-vnf-assign
        1. set capability.execution-order
        2. call self-serve-vnf-ra-assignment
          1. execute REST call to CDS blueprint processor
          2. put resource-accumulator-resolved-data in MDSAL GR-API/services/service/$serviceInstanceId/vnfs/vnf/$vnfId
        3. call self-serve- + capability-name
        4. put vnf information in AAI (including the selflink)
      2. call naming-policy-generate-name
      3. put generic-vnf relationship in AAI

This is the general logic of the vf-module assign flow and sub-flows:

  1. call vf-module-topology-operation
    1. call vf-module-topology-operation-assign
      1. set service-data based on SO request (userParams / cloudParams)
      2. call self-serve-vf-module-assign
        1. set capability.execution-order
        2. call self-serve-vfmodule-ra-assignment
          1. execute REST call to CDS blueprint processor
            1. put resource-accumulator-resolved-data in MDSAL GR-API/services/service/$serviceInstanceId/vnfs/vnf/$vnfId/vf-modules/vf-module
        3. call self-serve- + capability-name
      3. put vf-module information in AAI
      4. put vnfc information in AAI
 config-assign

config-assign

This action is meant to assign all the resources and generate the configuration to apply post-instantiation (day0 config).

Context

This action is triggered by SO after the AssignBB has been executed for Service, VNF and VF-Module. It corresponds to the ConfigAssignVnfBB.

See SO Building blocks Assignment.

Templates

For this action, you can define as many template as needed. Make sure for each template to follow the convention and to provide the mapping file, as follow:

  • xyz-template.vtl
  • xyz-mapping.vtl

Required Input

PropertyDescriptionDefinitions
template-prefixName of the template-prefix to resolve.
"template-prefix" : {
   "required" : true,
   "type" : "list",
   "entry_schema" : {
      "type" : "string"
}
resolution-key

The functionality requires the ability to retrieve the resolution that has been made later point in time in the process, during config-deploy action.

"resolution-key" : {
   "required" : true,
   "type" : "string"
}

Output

In order to perform dry-run, it is necessary to provide the meshed resolved template as output. To do so, the use of Modeling Concepts#getAttribute expression is required.

Also, as mentioned here Modeling Concepts#resourceResolution, the resource resolution component node will populate an attribute named assignment-params with the result.

Component

This action requires a node_template of type component-resource-resolution

The name of the node_template is important, as it will be used within the Workflow definition (see step.target property Modeling Concepts#workflowProperties)

Finally, you can see the component has a list of artifacts, being the template/mapping defined before.

Example:

Taking the vDNS example, we have a node_template name config-assign:

Example
      "config-assign" : {
        "type" : "component-resource-resolution",
        "interfaces" : {
          "ResourceResolutionComponent" : {
            "operations" : {
              "process" : {
                "inputs" : {
                  "resolution-key" : {
                    "get_input" : "resolution-key"
                  },
                  "store-result" : true,
                  "artifact-prefix-names" : [ "baseconfig", "incremental-config" ]
                }
              }
            }
          }
        },
        "artifacts" : {
          "baseconfig-template" : {
            "type" : "artifact-template-velocity",
            "file" : "Templates/baseconfig-template.vtl"
          },
          "baseconfig-mapping" : {
            "type" : "artifact-mapping-resource",
            "file" : "Templates/baseconfig-mapping.json"
          },
          "incremental-config-template" : {
            "type" : "artifact-template-velocity",
            "file" : "Templates/incremental-config-template.vtl"
          },
          "incremental-config-mapping" : {
            "type" : "artifact-mapping-resource",
            "file" : "Templates/incremental-config-mapping.json"
          }
        }
      },

Overall workflow example w/ component and artifact

Here is an example of the config-assign workflow:

config-assign
{
  "tosca_definitions_version": "controller_blueprint_1_0_0",
  "metadata": {
    "template_author": "Abdelmuhaimen Seaudi",
    "author-email": "abdelmuhaimen.seaudi@orange.com",
    "user-groups": "ADMIN, OPERATION",
    "template_name": "test",
    "template_version": "1.0.0",
    "template_tags": "test, vDNS-CDS, SCALE-OUT, MARCO"
  },
  "topology_template": {
    "workflows": {
      "config-assign": {
        "steps": {
          "config-assign": {
            "description": "Config Assign Workflow",
            "target": "config-assign"
          }
        },
        "inputs": {
          "resolution-key": {
            "required": true,
            "type": "string"
          },
          "config-assign-properties": {
            "description": "Dynamic PropertyDefinition for workflow(config-assign).",
            "required": true,
            "type": "dt-config-assign-properties"
          }
        },
        "outputs": {
          "dry-run": {
            "type": "json",
            "value": {
              "get_attribuxte": [
                "config-assign",
                "assignment-params"
              ]
            }
          }
        }
      }
    },
    "node_templates": {
      "config-assign": {
        "type": "component-resource-resolution",
        "interfaces": {
          "ResourceResolutionComponent": {
            "operations": {
              "process": {
                "inputs": {
                  "resolution-key": {
                    "get_input": "resolution-key"
                  },
                  "store-result": true,
                  "artifact-prefix-names": [
                    "baseconfig",
                    "incremental-config"
                  ]
                }
              }
            }
          }
        },
        "artifacts": {
          "baseconfig-template": {
            "type": "artifact-template-velocity",
            "file": "Templates/baseconfig-template.vtl"
          },
          "baseconfig-mapping": {
            "type": "artifact-mapping-resource",
            "file": "Templates/baseconfig-mapping.json"
          },
          "incremental-config-template": {
            "type": "artifact-template-velocity",
            "file": "Templates/incremental-config-template.vtl"
          },
          "incremental-config-mapping": {
            "type": "artifact-mapping-resource",
            "file": "Templates/incremental-config-mapping.json"
          }
        }
      }
    }
  }
}
 config-deploy

config-deploy

This action is meant to push the configuration templates defined during the config-assign step for the post-instantiation.

This action is triggered by SO after the CreateBB has been executed for all the VF-Modules.

Context

This action is triggered by SO after the CreateVnfBB has been executed. It corresponds to the ConfigDeployBB.

See SO Building blocks Assignment.

Templates

If need be, some template can be defined. They can either be resolved through the a node_template of type component-resource-resolution,which will then have to be combined with another node_template, in order to push the config in the network, or in third party system. In this case, you will want to leverage the multi-action worklow.

Else, the template could be resolved directly through a node_template of type component-script-executor through helpers functions being provided.

Required Inputs

PropertyDescription
resolution-key

Needed to retrieve the resolution that has been made earlier point in time in the process.

The combination of the artifact-name and the resolution-key will be used to uniquely identify the result.

Output

SUCCESS or FAILURE

Component

If you want to have a multi-action worklow, then the action will refer to a node_template of type dg-generic.

If you want to have a single action workflow, then you should use one of the following node type: component-script-executor, component-remote-script-executor, component-remote-ansible-executor

The name of the node_template is important, as it will be used within the Workflow definition (see step.target property Modeling Concepts#workflowProperties)

Finally, you can see the component(s) might have a list of artifacts, being the template/mapping defined before.

Example:

Taking the vDNS example, we have a node_template name config-deploy-process, which is of type dg-generic, hence we also have the dependent node_template.

Example
      "config-deploy-process" : {
        "type" : "dg-generic",
        "properties" : {
          "content" : {
            "get_artifact" : [ "SELF", "dg-config-deploy-process" ]
          },
          "dependency-node-templates" : [ "nf-account-collection", "execute" ]
        },
        "artifacts" : {
          "dg-config-deploy-process" : {
            "type" : "artifact-directed-graph",
            "file" : "Plans/CONFIG_ConfigDeploy.xml"
          }
        }
      },
      "nf-account-collection" : {
        "type" : "component-resource-resolution",
        "interfaces" : {
          "ResourceResolutionComponent" : {
            "operations" : {
              "process" : {
                "inputs" : {
                  "artifact-prefix-names" : [ "nf-params" ]
                }
              }
            }
          }
        },
        "artifacts" : {
          "nf-params-template" : {
            "type" : "artifact-template-velocity",
            "file" : "Templates/nf-params-template.vtl"
          },
          "nf-params-mapping" : {
            "type" : "artifact-mapping-resource",
            "file" : "Templates/nf-params-mapping.json"
          }
        }
      },
      "execute" : {
        "type" : "component-netconf-executor",
        "requirements" : {
          "netconf-connection" : {
            "capability" : "netconf",
            "node" : "netconf-device",
            "relationship" : "tosca.relationships.ConnectsTo"
          }
        },
        "interfaces" : {
          "ComponentNetconfExecutor" : {
            "operations" : {
              "process" : {
                "inputs" : {
                  "script-type" : "jython",
                  "script-class-reference" : "Scripts/python/ConfigDeploy.py",
                  "instance-dependencies" : [ ],
                  "dynamic-properties" : "*config-deploy-properties"
                }
              }
            }
          }
        },
        "artifacts" : {
          "baseconfig-template" : {
            "type" : "artifact-template-velocity",
            "file" : "Templates/baseconfig-template.vtl"
          },
          "baseconfig-mapping" : {
            "type" : "artifact-mapping-resource",
            "file" : "Templates/baseconfig-mapping.json"
          },
          "incremental-config-template" : {
            "type" : "artifact-template-velocity",
            "file" : "Templates/incremental-config-template.vtl"
          },
          "incremental-config-mapping" : {
            "type" : "artifact-mapping-resource",
            "file" : "Templates/incremental-config-mapping.json"
          }
        }
      }
    }
  }

Overall workflow example w/ component and artifact

Here is an example of the config-deploy workflow:

config-deploy
{
  "tosca_definitions_version": "controller_blueprint_1_0_0",
  "metadata": {
    "template_author": "Abdelmuhaimen Seaudi",
    "author-email": "abdelmuhaimen.seaudi@orange.com",
    "user-groups": "ADMIN, OPERATION",
    "template_name": "test",
    "template_version": "1.0.0",
    "template_tags": "test, vDNS-CDS, SCALE-OUT, MARCO"
  },
  "topology_template": {
    "workflows": {
      "config-deploy": {
        "steps": {
          "config-deploy": {
            "description": "Resource Assign and Python Netconf Activation Workflow",
            "target": "config-deploy-process",
            "activities": [
              {
                "call_operation": ""
              }
            ]
          }
        },
        "inputs": {
          "resolution-key": {
            "required": false,
            "type": "string"
          },
          "service-instance-id": {
            "required": false,
            "type": "string"
          },
          "config-deploy-properties": {
            "description": "Dynamic PropertyDefinition for workflow(config-deploy).",
            "required": true,
            "type": "dt-config-deploy-properties"
          }
        }
      }
    },
    "node_templates": {
      "config-deploy-process": {
        "type": "dg-generic",
        "properties": {
          "content": {
            "get_artifact": [
              "SELF",
              "dg-config-deploy-process"
            ]
          },
          "dependency-node-templates": [
            "nf-account-collection",
            "execute"
          ]
        },
        "artifacts": {
          "dg-config-deploy-process": {
            "type": "artifact-directed-graph",
            "file": "Plans/CONFIG_ConfigDeploy.xml"
          }
        }
      },
      "nf-account-collection": {
        "type": "component-resource-resolution",
        "interfaces": {
          "ResourceResolutionComponent": {
            "operations": {
              "process": {
                "inputs": {
                  "artifact-prefix-names": [
                    "nf-params"
                  ]
                }
              }
            }
          }
        },
        "artifacts": {
          "nf-params-template": {
            "type": "artifact-template-velocity",
            "file": "Templates/nf-params-template.vtl"
          },
          "nf-params-mapping": {
            "type": "artifact-mapping-resource",
            "file": "Templates/nf-params-mapping.json"
          }
        }
      },
      "execute": {
        "type": "component-netconf-executor",
        "requirements": {
          "netconf-connection": {
            "capability": "netconf",
            "node": "netconf-device",
            "relationship": "tosca.relationships.ConnectsTo"
          }
        },
        "interfaces": {
          "ComponentNetconfExecutor": {
            "operations": {
              "process": {
                "inputs": {
                  "script-type": "jython",
                  "script-class-reference": "Scripts/python/ConfigDeploy.py",
                  "instance-dependencies": [
                    
                  ],
                  "dynamic-properties": "*config-deploy-properties"
                }
              }
            }
          }
        },
        "artifacts": {
          "baseconfig-template": {
            "type": "artifact-template-velocity",
            "file": "Templates/baseconfig-template.vtl"
          },
          "baseconfig-mapping": {
            "type": "artifact-mapping-resource",
            "file": "Templates/baseconfig-mapping.json"
          },
          "incremental-config-template": {
            "type": "artifact-template-velocity",
            "file": "Templates/incremental-config-template.vtl"
          },
          "incremental-config-mapping": {
            "type": "artifact-mapping-resource",
            "file": "Templates/incremental-config-mapping.json"
          }
        }
      }
    }
  }
}
 Build your own workflow

TBD

 SDC Modeling & Distribution

Introduction

The purpose is to describe integration of CDS within SDC

What's new

At the VF and PNF level, a new artifact type CONTROLLER_BLUEPRINT_ARCHIVE allow the designed to load the previsouly designed CBA as part of the resource.

How to add the CBA in SDC VF resource (similar for PNF)

Create the VF resource

Click on Deployment Artifact, then Add other arifacts, and select you CBA


Check the artifact is uploaded OK, and click on Certify.

Create a new service model, and add the newly created VF (including CBA artifact) to the new service model. Click on "Add Service"

Click on "Composition", and drag the VF we created from the palette on the left onto the canvas in the middle.

Then, click on "Submit for Testing".

Click on Properties Assignments, then click on the service name, e.g. "CDS-VNF-TEST" from the right bar.

Type "sdnc" in the filter box, and add the sdnc_model_name, sdnc_model_version, and sdnc_artifact_version, and click "Save".

  • sdnc_model_name - This is the name of the blueprint (e.g. CBA name)
  • sdnc_model_version - This is the version of the blueprint
  • sdnc_artifact_name - This is the name of the VNF resource accumulator template

Type "skip" in the filter box, and set "skip post instantiation" to FALSE, then click "Save".

Login as Tester (jm0007/demo123456!) and accept the new service.

Login as Governor (gv0001/demo123456!) and approve for distribution.

Login as Operator (op0001/demo123456!) and click on "Distribute".

Click on "Monitor" to check the progress of the distribution, and check that all ONAP components were notified, and downloaded the artifacts, and deployed OK.

  • No labels