Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 9 Next »

Introduction to the proposal

Please read the attached Powerpoint as an easy introduction to the proposal.

Informal Class Diagram 

Aggregate Representation Class Attributes

  • A few key attributes of each aggregation representation class are displayed here. 
  • What is not shown are the various capability, capacity and utilization measures (e.g., CPU capabilities, capacity, optional allocation step size, and utilization) that are to be attached the classes. These measures are essential for placement and management purposes in Edge Automation.  These will be added once a consensus is reached on the overall class structure.

Physical DC Endpoint Class:

ID

Type

Cardinality

Description

Common-name

Name class

1

Common name fields across all objects

Longitude-ID

float

1

Physical DC Longitude.

Latitude-ID

float

1

Physical DC Latitude. Lat/Lon distance between physical DCs serves as a good estimate for propagation latency.

Network-Bandwidth-Info

(DC common-name, value)

1..n

Maximum incoming/outgoing Network Bandwidth from the physical DC to all other interconnected physical DCs.

Cloud Region Class

Key Attributes

ID

Type

Cardinality

Description

Common-name

Name class

1

Common name fields across all objects

Physical-DC-Endpoint-Collection-ID

Physical DC Endpoint Class Collection

1..n

Used for latency and bandwidth accounting across physical DCs in a distributed data center topology

Resource Cluster Group Class

ID

Type

Cardinality

Description

Common-name

Name class

1

Common name fields across all objects

Resource-Cluster-Collection-ID

Resource Cluster Class Collection

1..n

Collection of multiple resource clusters

Physical-DC-Endpoint-ID

 Physical DC Endpoint

1

This is primarily useful in a distributed data center topology -- more details in the cloud region section.

Resource Cluster Class


ID

Type

Cardinality

Description

Common-name

Name class

1

Common name fields across all objects

<resource>-Collection-list

<resource> Collection

1..n

e.g., Collection of multiple compute hosts

Resource Slice Class

ID

Type

Cardinality

Description

Common-name

Name class

1

Common name fields across all objects

<tenant>-name

Name class

1

Reference to the <tenant>/administrative domain to whom the slice is given.

<allocated resources>-list

<resource-allocation> Collection

1..n

Resources with allocations

Important differences between Public Cloud and Private Cloud

Private cloud offers more fine grained control over the infrastructure as compared to Public Cloud

  • Public cloud exposes only Virtualized infra layer

    • Virtualized infra layer objects

      • Aggregate object example: Resource Slice

      • Atomic object example: VM

  • Private cloud exposes HW infra layer besides Virtualized infra layer

    • Virtualized infra layer objects (same as Public Cloud) +

    • HW infra layer objects

      • Aggregate object example: Resource Cluster

      • Atomic object example: Host

Some non-exhaustive examples including benefits of more fine grained HW infrastructure control in a Private Cloud – these are especially relevant for Distributed Edge Clouds

  • Service Security Policy

    • Leverage Smart NICs to program security policies to deliver performance & scalability

  • Service Operational Policy

    • Leverage Host and Resource Cluster near-real-time resource metrics and real-time faults & alerts to substantially improve closed loop remediation response time

  • Service Placement Policy

    • Leverage Resource Cluster near-real-time allocated resource capacity and metrics/faults/alerts to substantially improve dynamic workload placement/scheduling across cloud regions

      • These can be represented as additional soft constraints in the placement/scheduling minimize/maximize objective function


  • No labels