Comment: (Vladimir Y.) The whole text is about E2E slicing, not RAN slicing. See e.g. the diagram
This page contains work in progress! |
---|
Questions and comments are inserted in the text as needed, prefix them with "Question:" or "Comment:". Text below the line "----temporary text ----" is a placeholder for text that may or may not be used later on. |
...
I can continue, but prefer to stop at this point. I think we should follow the concepts clearly defined and agreed in the relevant SDOs. It would be bad idea to deviate from 3GPP / NGMN definitions and/or invent our own definitions.
(Peter L) The point here is not to invent any new definitions at all - the point is to describe a slice related management use case using the RAN, CN and TN technologies we already have, in order to expand the capabilities of ONAP (or show that they are already sufficient). We are not here to develop the CN, TN or RAN, right?
However, as ONAP has a slightly different structure and functional composition than what is described by NGNM or 3GPP, we effectively do work with ONAP specific definitions in some management areas.
Gliffy name Cell Planning
Goal for this Use Case:
To show that ONAP can be used to desgn and deploy the Service 2 in Comment: (Vladimir Y.) The text under the figure says that the blue cells are shared between NSSI RAN1 and RAN2. On the figure itself, blue is marked as RAN1 and red as RAN2, i.e. blue is not shared between RAN1 and RAN2. Which one is right?
Peter: Thanks, fixed to make it consistent. Question remains, though - do we prefere the definition as it is written now, or a definition where all cells are part of NSSI RAN2 and the blue cells are also part of NSSI RAN1? The result will be the same, it is only a question if some cells are to be shared between NSSIs, or if the division into NSSIs shall be unique and the sharing is betwen NSIs. There might exist limitations or capabilities in e.g. what can be described using TOSCA that makes one of these alternatives more favourable than the other?
Goal for this Use Case:
To show that ONAP can be used to desgn and deploy the Service 2 in a new CN and selected portion of a RAN currently providing Service 1 using NSI A, see Figure 1 and Figure 2.
The steps described below will cover both the design (or preparation) and the lifecycle management (instantiation, configuration, activation, monitoring, modification & decommissioning) of the slice as described, for example, in the 3GPP TR 28.801 V15.0.0 (2017-09) document.
Please note that we use the LTE network and the RAN sharing concepts to illustrate the management problem to be solved by ONAP.
...