Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Table of Contents

Existing Optimization Models

Minimize an unweighted value

...

Code Block
languagejs
collapsetrue
{
    "minimize": {
        "sum": [
            {
                "product": [
                    100,
                    {
                        "distance_between": [
                            "customer_loc",
                            "vG"
                        ]
                    }
                ]
            },
            {
                "product": [
                    200,
                    {
                        "hpa_score": [
                            "vG"
                        ]
                    }
                ]
            }
        ]
    }
}

New Optimization Model

Objective Function Object

AttributeRequiredContentValuesDescription
goalYStringminimize, maximizeThe goal of the optimization
objectiveoperation_functionYObjective Operation function Object
The objective operation function that has to be optimized


Objective Operation function object

AttributeRequiredContentValuesDescription
operationoperatorYString

sum, min, max

The operation which will be a part of the objective function
operandsY

List of operand object

EIther an operation-function or a function

The operand on which the operation is to be performed.

The operand can be an attribute or result of a function 

inverseNBooleandefault : FalseFlag to specify whether the objective function has to be inverted.

operation-function operand object

decimaldefault operand
AttributeRequiredContentValuesDescription
normalizationNnormalization object
Set of values used to normalize the operand
weightNDecimalDefault: 1.0Weight of the function
objectiveoperation_functionNObjective operation function object

function operand object

AttributeRequiredContentValuesDescription
normalizationNnormalization object
Set of values used to normalize the operand
weightNDecimalDefault: 1.0Weight of the function
functionNString

distance_between,

latency_between, attribute

Function to be performed on the parameters
fucntion_paramsNdict

parameters on which the function will be applied.

The parameters will change for each function.

Examples

1. Minimize an attribute of the demand

...

Normalization object

AttributeRequiredContentValuesDescription
startYDecimal
Start of the range
endYDecimal
End of the range

JSON Schema

View file
nameopt_schema.json
height250


Examples


1. Minimize an attribute of the demand

Code Block
languagejs
collapsetrue
{
    "goal": "minimize",
    "objectiveoperation_function": {
        "operandoperands": [
            {
                "function": "attribute",
                "params": {
                    "attribute": "latency",
                    "demand": "urllc_core"
                }
            }
        ],
        "operationoperator": "sum"
    }
}


2. Minimize the sum of the distance between the demand and the customer location.

...

Code Block
languagejs
collapsetrue
{
   "goal": "minimize",
   "objectiveoperation_function": {
      "operationoperator": "sum",
      "operands": [
         {
            "function": "distance_between",
            "weight": 1.0,
            "params": {
               "demand": "vG",
               "location": "customer_loc"      
            } 
         },
         {
 	        "function": "distance_between",
            "weight": 1.0,
            "params": {
               "demand": "vFW",
               "location": "customer_loc"      
            } 
         }
      ]
   }
}

...

Code Block
languagejs
collapsetrue
{
   "goal": "minimize",
   "objectiveoperation_function": {
   "operationoperator": "sum",
   "operands": [
      {
         "function": "attribute",
         "weight": 1.0,
         "params": {
            "demand": "urllc_core",
            "attribute": "latency"      
         } 
      },
      {
         "function": "attribute",
         "weight": 1.0,
         "params": {
            "demand": "urllc_ran",
            "attribute": "latency"      
         } 
      }
   ]
 }
}

...

Code Block
languagejs
collapsetrue
{
   "goal": "maximize",
   "objectiveoperation_function": {
   "operationoperator": "sum",
   "operands": [
      {
         "objectiveoperation_function": {
             "operationoperator": "min",
             "operandoperands": [
                 {
                      "weight": 1.0,
                      "function": "attribute",
                      "params": {
                         "demand": "urllc_core",
                         "attribute": "throughput"
                      }
                 },
                 {
                      "weight": 1.0,
                      "function": "attribute",
                      "params": {
                         "demand": "urllc_ran",
                         "attribute": "throughput"
                      }
                 },
                 {
                      "weight": 1.0,
                      "function": "attribute",
                      "params": {
                         "demand": "urllc_transport",
                         "attribute": "throughput"
                      }
                 }
             ]
         },
         "weightnormalization": {
2.0        },    "start": 100,
  {          "objective_functionend": {1000
             "inverse": true},
             "operationweight": "sum",2.0 
      },
     "operand": [{
         "operation_function": {
             "operator": "sum",
             "operands": [
                 {
                     "weight": 1.0,
                     "function": "attribute",
                     "params": {
                         "demand": "urllc_core",
                         "attribute": "latency"
                      }
                 },
                 {
                     "weight": 1.0,
                     "function": "attribute",
                     "params": {
                         "demand": "urllc_ran",
                         "attribute": "latency"
                      }
                 },
                 {
                     "weight": 1.0,
                     "function": "attribute",
                     "params": {
                         "demand": "urllc_transport",
                         "attribute": "latency"
                      }
                 }
             ]
         },
         "weightnormalization": 1.0{
      }    ]  }
}

_bw = [100, 200, 300]

ran_nssi → property bw → func(slice_profile[])

core_nssi  → property bw → func(slice_profile[])

tn_nssi  → property bw→ func(slice_profile[])

Maximize (min (ran_nssi_bw, core_nssi_bw, tr_nssi_bw))

Max  [ sum ( W_bw *  min (ran_nssi_bw, core_nssi_bw, tr_nssi_bw), 1/(W_lat * ( sum (w1 * ran_nssi_lat, w2 core_lat, W3* tn_lat)) ) ]

Min/max operator:  list of operands

Sum operator : list of operands

prod operator: weight, operand

normalized_unit = func(bw, weight, unit)

...

"start": 50,
            "end": 5
         },
         "weight": 1.0
      }
   ]
 }
}


normalization:

function(value, range(start, end), weight)

All ranges are converted to 0 to 1. The inverse operation is not needed since it is already implied in the range.

normalized value = (value - start) / (end-start)


Eg:

latency range: 50 ms to 5 ms

candidate latencyNormalized value
20 ms0.667
40 ms0.222

throughput range: 100 Mbps to 1000Mbps

candidate throughputNormalized value
300 Mbps0.222
800 Mbps0.778