Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Table of Contents

...

Deliver Application SLAs while minimizing TCO.

Edge Application Profiles


No

Application Classification

(based on required RTT)

Application ExamplesNetwork / Service Behavior TypeDeployment Component/ APIsONAP ManagedEdge Deployment Hard /Soft Constraint (Based on RTT)Potential Application ProviderCasablanca CandidateAdditional Information
1Real-time (20ms -100ms)In service path optimization applications which run in open CU-CP platform (also known as RAN Intelligent Controller, or SD-RAN controller). Real-Time   Network State ControlOpen 5G CU-CP (CU - Control Plane) – VNFC.YesHardNF Vendor/Service Provider/3rd PartyYes

These applications include load balancing, link set-up, policies for L1-3 functions, admission control and leverage standard interface defined by oRAN / xRAN between network information base (or context database) and third party applications. Data collection through is B1 and implemented using x technology.

2Near-real-time (500ms and above)Slice monitoring, performance analysis, fault analysis, root cause analysis, SON applications, Optimization (SON Drive Test Minimization etc.), ML methodologies for various apps.Network Analytics & OptimizationDCAEYesSoftNF Vendor/Service ProviderYes
3Near-real-time (500ms and above)Video Analytics, Video Optimization, Customer geoLocation information, Anonymized customer data etc.Workload Analytics,  Optimization & Context processingCloud Edge or Cloud CentralNoSoft3rd PartyNA. Out of scope for ONAPThe apps are OTT and the service provider is offering their infrastrcture as a service to OTT providers.
4Real-time (10-20 ms)Third party applications that directly interacts with the UEs, like AR/VR, factory automation, drone control, etc. Workload Automation / AR-VR / Content, etc.UE or Cloud EdgeNoHard3rd PartyNA. Out of scope for ONAP.

These are third party applications, developed by enterprise customers (e.g. factory automation) or content creators (AR/VR applications). In this case, messages or requests or measurements directly go from UE (via UPF or GWs) to the applications and applications respond back. 

5same as 3)same as 3)Value Added Services + same as 3)

same as 3) + MEC/Cloud APIs (Note 1)

Yessame as 3)same as 3)StretchService Provider could be oferring video surveillance (video analytics/optimization apps etc.) as a service to enterprises.
6same as 4)same as 4)Value Added Services + same as 4)same as 4) + MEC/Cloud APIs (Note 1)Yessame as 4)same as 4)StretchService Provider could be oferring factory automation as a service to enterprises.

...

  • e.g., MEC APIs - Location info, Radio control info etc.
  • e.g., Cloud APIs - IaaS/PaaS + Context Awareness (time, places, activity, weather etc.)  

Edge Infrastructure

This diverse work load will require somewhat heterogeneous cloud environment, including Graphical Processing Unit, highly programmable network accelerators, etc., in addition to traditional compute, storage, etc.

To support edge deployment, we need:

1)     Rich information / data model to discover and capture hardware resources deployed at the edge and request right type of resource to meet unique application needs.

2)     Must support workload deployment options such as VM, Container (e.g. Kubernetes) on VM or bare metal

3)     Must support a very small foot print to an edge location supporting a metropolitan area with verity of workload deployment

4)     Edge cloud could be on customer premises – Factory automation

5)     Must provide efficient network infrastructure that support slicing and QoS configuration options to meet various mobility services need

...

Edge Infrastructure Profiles

...

  • Distributed
    • 1000's of edge locations of varying capacity
    • Casablanca - Implementation
      • 10-100 edge locations (simple starting point)
  • Peformance-awareness
    • GPU, FPGAs, SR-IOV etc.
    • Casablanca - Implementation
      • SR-IOV desired for Data Plane (5G CU-UP)
      • NIC offload desired for tunnel encap/decap e.g. 5G CU-UP GTP tunnel
  • Resource Isolation through fine-grained QoS
    • Support both Latency-sensitive and General purpose applications
    • Support ONAP Management plane components in the same cloud with Workloads
    • Casablanca - Implementation
      • Min/Max resource reservation model desired
  • Security
    • Workloads are often deployed in external (non-dc-type) locations and need HW security (TPM etc.) 
    • 3rd party applications which need additional HW security (VM, Containers in VM etc.) and SW security (Inter-component TLS etc.)
    • Casablanca - Implementation
      • Edge Clouds with private IP addresses, i.e. reachable via private connections 
      • For example, edge cloud in a public cloud provider reachable via AWS direct connect or Azure express route or Google partner interconnect 
  • Capacity constraints
    • Very small footprint (few nodes per physical location), Medium footprint (10's of nodes per physical location), Large footprint (100's of nodes per physical location)
    • Casablanca - Deployment
      • Need number of cores per servers; Need storage capacity/pool
  • Cloud Diversity
    • Private and Public Cloud Providers

    • Casablanca - Implementation
      • Note: ONAP currently supports private edge clouds based on VMware VIO, Wind River Titanium Cloud, Upstream OpenStack
      • Desire to have at least one Public Cloud Provider (Azure, AWS, GCE etc.) as an Edge Cloud Provider
        • ONAP central instantiates an Edge Cloud instance (blue cloud provider in gliffy) via a IaaS API to cloud provider
        • ONAP central instantiates one or more ONAP edge components as need, e.g. DCAE
        • ONAP central instantiates one or more NFs, e.g. 5G CU-UP/CP
  • Configuration Diversity
    • 5G Factory Automation, 5G General Mobility Services etc. – User Plane components (DU, CU-UP, UPF etc.) 

Hierarchical (ONAP Central, Edge

...

) Architecture

ONAP Activity Goal #2: Define  Define hierarchical ONAP Central/, Edge Architecture/functional interactions (API reference points) to support aforementioned Application/Infrastrcuture profile in Any "Cloud" (internal Business Unit or external Partner) at Any "Location" edge, regional or central. 

...

borderColorred
bgColorlightyellow
borderStyledashed
titleFeedback from OOM team

 (May 9th call / Ramki Krishnan attended OOM call and captured feedback) - Keep it Simple Stupid (KISS)

...

  • Note: Independent of any Edge CP's Orchestration components.

...

or

...

Details:

  • Optimal Distribution of Intelligence and Control, includes distributed data collection and localized processing of intelligence
    • Support for various edge sizes
    • Scaling needs - Hierarchical federation (over and beyond auto scale-out of ONAP services) - Distribution of orchestration, fabric control, stats/faults/log collection and distributed processing of same (Regional Controllers)
    • Optimal placing of edge applications. For example placing edge applications in the best edge(s) considering various constraints (e.g Proximity to end user,  Radio/BW availability, cost,  accelerators availability - HPA,   Geo-affinity regulations, trusted infrastrcture of edge, device characteristics and resource availability to take up load etc...),  Auto creation of constraints is one requirement.
    • Providing contextual information to application services after gathering information from 5G network functions.
  • Autonomic Control, Management and Operations of distributed service chains
    • Traffic  steering to the right edge applications (e.g  Programming UE classifier of UPF) and dynamic SFC within VNFCs of edge application.
    • Supporting various workload types (VMs, Containers etc.)
    • Deploying IoT specific infrastructure software in edges such as EdgeXFoundry.
    • Supporting multi-tenancy to place workloads in Edges belonging to various organizations
    • Performance determinism and high throughput edge 
    • Securing confidential information/keys/secrets and detecting any software tampering at edges

Few examples:  on scaling -   OOM based scaling may not be good enough and  there may be a need to  offload some ONAP functionality to regional level as the target number of edge clouds could be in tens of thousands.   Also, to reduce amount of data to central ONAP services for analytics,  there is a need for offloading DCAE functions to regional level, which could involve  identifying real time data sources, collecting and analyzing the data and disseminating output data to central ONAP function.  Controlling fabric (L2/L3 switches in edge-clouds and WAN links) is another function that may require offloading some ONAP SDNC functions to regional sites

...

...

Single Provider - Hierarchical Architecture

Gliffy
size1200
nameInternal Edge - Orchestration
pagePin9

...

  • Cloud Provider Business Unit: 
    • Provides hosting of Workloads, ie., IaaS/PaaS
      • SP installs and manages ONAP in separate 'Management Cloud' instances
      • SP installs and manages Network Services + 3rd Party Apps in separate 'Services/Apps Cloud' instances
  • Cloud Provider Business Unit: 
    • Provides SaaS, eg., Analytics/Closed Loop as a Service, LCM of Apps, etc. 
      • ONAP Edge may not be needed
  • Cloud Provider Business Unit: 
    • Types of virtualized cloud resource tenant and their characteristics
      • Virtualized Network Workload Cloud Resource Tenant Category
      • Network Management Cloud Resource Tenant Category
      • Virtualized Application Workload Cloud Resource Tenant Category
      • Application Management Cloud Resource Tenant Category 
    • Physical Network Function and their characteristics
      • Part of Edge Cloud Orchestrator
  • Immediate interest to ONAP for 5G use cases
    • Virtualized Network Workload Cloud Resource Tenant Category
      • Guaranteed
      • Burstable (with minimum guarantee)
      • Best Effort
    • Network Management Cloud Resource Tenant Category 
      • Burstable (with minimum guarantee) 

...

Single Provider - Edge Functional Decomposition 

FunctionStatefulnessONAP Project MappingDetails
InventoryyesA&AI
IP Address Management (IPAM)yesSDN-C
Multi-Cloud SupportnoMulti-VIM
Initial PlacementnoOOF
Closed Loop ControllernoAPP-C
Closed Loop PolicynoPolicy
Infra Closed Loop AnalyticsnoMulti-VIM, DCAE
App Closed Loop AnalyticsnoDCAE





Single Provider - Sequence Diagram

Gliffy
nameONAP-Edge - sequence
pagePin2425