Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Added a link to the SDN-C Clustering Page

Introduction

...

Some of the ONAP components many need a more deterministic deployment; for example to enable intra-cluster communication. For these applications the component can be deployed as a Kubernetes StatefulSet which will maintain a persistent identifier for the pods and thus a stable network id for the pods. For example: the pod names might be web-0, web-1, web-{N-1} for N 'web' pods with corresponding DNS entries such that intra service communication is simple even if the pods are physically distributed across multiple nodes. An example of how these capabilities can be used is described in the Running Consul on Kubernetes tutorial.  

The SDN-C Clustering on Kubernetes page describes a working example of many of these techniques working together.

Pod Placement Rules

OOM will use the rich set of Kubernetes node and pod affinity / anti-affinity rules to minimize the chance of a single failure resulting in a loss of ONAP service. Node affinity / anti-affinity is used to guide the Kubernetes orchestrator in the placement of pods on nodes (physical or virtual machines).  For example:

...

Pod affinity / anti-affinity is the concept of creating a spacial relationship between pods when the Kubernetes orchestrator does assignment (both initially an in operation) to nodes as explained in Inter-pod affinity and anti-affinity. For example, one might choose to co-located all of the ONAP SDC containers on a single node as they are not critical runtime components and co-location minimizes overhead. On the other hand, one might choose to ensure that all of the containers in an ODL cluster (SDNC and APPC) are placed on separate nodes such that a node failure has minimal impact to the operation of the cluster.  An example of how pod affinity / anti-affinity is shown below::

...